

Implementation

Idioms
and

Best Practices

Building Robust, Scalable and Maintainable Client Applications using PureMVC
with Examples in ActionScript 3 and MXML

View
Components Data Objects

Local or Remote

Façade

Mediator

Mediator

Mediator

Mediator

Mediator

View

Controller

Command

Command Command

Command

Proxy

Proxy

Proxy

Proxy

Model

Any

Proxy

AnyAny

Command

Obj

Obj

Obj

Obj

Obj

UI

UI

UI

UI

UI

AUTHOR: Cliff Hall <cliff@puremvc.org>
LAST MODIFIED: 3/02/2008

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 2 of 46 3/2/2008 9:57 PM

PureMVC Gestalt 4
• Model & Proxies 4

• View & Mediators 4

• Controller & Commands 5

• Façade & Core 5

• Observers & Notifications 5

• Notifications Can Be Used to Trigger Command Execution 6

• Mediators Send, Declare Interest In, and Receive Notifications 6

• Proxies Send, But Do Not Receive Notifications 6

Façade 7
• What is a Concrete Façade? 8

• Creating a concrete Façade for your Application 8

• Initializing your concrete Façade 11

Notifications 13
• Events vs. Notifications 13

• Defining Event and Notification Constants 14

Commands 16
• Use of Macro and Simple Commands 16

• Loosely-coupling Commands to Mediators and Proxies 17

• Orchestration of Complex Actions and Business Logic 17

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 3 of 46 3/2/2008 9:57 PM

Mediators 23
• Responsibilities of the Concrete Mediator 23

• Casting the View Component Implicitly 24

• Listening and Responding to the View Component 25

• Handling Notifications in the Concrete Mediator 27

• Coupling of Mediators to Proxies and other Mediators 30

• User Interaction with View Components and Mediators 32

Proxies 36
• Responsibilities of the Concrete Proxy 36

• Casting the Data Object Implicitly 37

• Prevent Coupling to Mediators 39

• Encapsulate Domain Logic 40

• Interacting with Remote Proxies 41

Inspiration

PureMVC is a pattern-based framework originally
driven by the currently relevant need to design high-
performance RIA clients. It has now been ported to
other languages and platforms including server
environments. This document focuses on the client-
side.

While the interpretation and implementations are
specific to each platform supported by PureMVC, the
patterns employed are well defined in the infamous
‘Gang of Four’ book: Design Patterns: Elements
of Reusable Object-Oriented Software
(ISBN 0-201-63361-2)

Highly recommended.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 4 of 46 3/2/2008 9:57 PM

PureMVC Gestalt

The PureMVC framework has a very narrow goal. That is to help you
separate your application’s coding interests into three discrete tiers;
Model, View and Controller.

This separation of interests, and the tightness and direction of the
couplings used to make them work together is of paramount
importance in the building of scalable and maintainable applications.

In this implementation of the classic MVC Design meta-pattern, these
three tiers of the application are governed by three Singletons (a class
where only one instance may be created) called simply Model, View
and Controller. Together, they are referred to as the ‘Core actors’.

A fourth Singleton, the Façade simplifies development by providing a
single interface for communication with the Core actors.

Model & Proxies

The Model simply caches named references to Proxies. Proxy code
manipulates the data model, communicating with remote services if
need be to persist or retrieve it.

This results in portable Model tier code.

View & Mediators

The View primarily caches named references to Mediators. Mediator
code stewards View Components, adding event listeners, sending
and receiving notifications to and from the rest of the system on
their behalf and directly manipulating their state.

This separates the View definition from the logic that controls it.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 5 of 46 3/2/2008 9:57 PM

PureMVC Gestalt
Controller & Commands

The Controller maintains named mappings to Command classes,
which are stateless, and only created when needed.

Commands may retrieve and interact with Proxies, send
Notifications, execute other Commands, and are often used to
orchestrate complex or system-wide activities such as application
startup and shutdown. They are the home of your application’s
Business Logic.

Façade & Core

The Façade, another Singleton, initializes the Core actors (Model,
View and Controller), and provides a single place to access all of
their public methods.

By extending the Façade, your application gets all the benefits of
Core actors without having to import and work with them directly.
You will implement a concrete Façade for your application only once
and it is simply done.

Proxies, Mediators and Commands may then use your application’s
concrete Façade in order to access and communicate with each
other.

Observers & Notifications

PureMVC applications may run in environments without access to
Flash’s Event and EventDispatcher classes, so the framework
implements an Observer notification scheme for communication
between the Core MVC actors and other parts of the system in a
loosely-coupled way.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 6 of 46 3/2/2008 9:57 PM

PureMVC Gestalt
Observers & Notifications

You need not be concerned about the details of the PureMVC
Observer/Notification implementation; it is internal to the
framework. You will use a simple method to send Notifications from
Proxies, Mediators, Commands and the Façade itself that doesn’t
even require you to create a Notification instance.

Notifications Can Be Used to Trigger Command Execution

Commands are mapped to Notification names in your concrete
Façade, and are automatically executed by the Controller when
their mapped Notifications are sent. Commands typically
orchestrate complex interaction between the interests of the View
and Model while knowing as little about each as possible.

Mediators Send, Declare Interest In and Receive Notifications

When they are registered with the View, Mediators are interrogated
as to their Notification interests by having their listNotifications
method called, and they must return an array of Notification names
they are interested in.

Later, when a Notification by the same name is sent by any actor in
the system, interested Mediators will be notified by having their
handleNotification method called and being passed a reference to
the Notification.

Proxies Send, But Do Not Receive Notifications

Proxies may send Notifications for various reasons, such as a
remote service Proxy alerting the system that it has received a
result or a Proxy whose data has been updated sending a change
Notification.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 7 of 46 3/2/2008 9:57 PM

PureMVC Gestalt
Proxies Send, but Do Not Receive Notifications

For a Proxy to listen for Notifications is to couple it too tightly to the
View and Controller tiers.

Those tiers must necessarily listen to Notifications from Proxies, as
their function is to visually represent and allow the user to interact
with the data Model held by the Proxies.

However View and Controller tiers should be able to vary without
affecting the data Model tier.

For instance, an administration application and a related user
application might share the same Model tier classes. If only the use
cases differ they can be carried out by different View/Controller
arrangements operating against the same Model.

Façade

The three Core actors of the MVC meta-pattern are represented in
PureMVC by the Model, View and Controller classes. To simplify the
process of application development, PureMVC employs the Facade
pattern.

The Facade brokers your requests to the Model, View and Controller,
so that your code does not need import those classes and you do not
need to work with them individually. The Façade class automatically
instantiates the Core MVC Singletons in its constructor.

Typically, the framework Facade will be sub-classed in your application
and used to initialize the Controller with Command mappings.
Preparation of the Model and View are then orchestrated by
Commands executed by the Controller.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 8 of 46 3/2/2008 9:57 PM

Façade
What is a Concrete Façade?

Though the Core actors are complete, usable implementations, the
Façade provides an implementation that should be considered
abstract, in that you never instantiate it directly.

Instead, you subclass the framework Façade and add or override
some of its methods to make it useful in your application.

This concrete Facade is then used to access and notify the
Commands, Mediators and Proxies that do the actual work of the
system. By convention, it is named ‘ApplicationFacade’, but you
may call it whatever you like.

Generally, your application’s View hierarchy (display components)
will be created by whatever process your platform normally
employs. In Flex, an MXML application instantiates all its children or
a Flash movie creates all the objects on its Stage. Once the
application’s View hierarchy has been built, the PureMVC apparatus
is started and the Model and View regions are prepared for use.

Your concrete Façade is also used to facilitate the startup process in
a way that keeps the main application code from knowing much
about the PureMVC apparatus to which it will be connected. The
application merely passes a reference to itself to a ‘startup’ method
on your concrete Façade’s Singleton instance.

Creating a Concrete Façade for Your Application

Your concrete Façade doesn’t need to do much to provide your
application with a lot of power. Consider the following
implementation:

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 9 of 46 3/2/2008 9:57 PM

Façade
Creating a Concrete Façade for Your Application

ApplicationFacade.as:

package com.me.myapp
{
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3..patterns.facade.*;

 import com.me.myapp.view.*;
 import com.me.myapp.model.*;
 import com.me.myapp.controller.*;

 // A concrete Facade for MyApp
 public class ApplicationFacade extends Façade implements IFacade
 {
 // Define Notification name constants
 public static const STARTUP:String = "startup";
 public static const LOGIN:String = "login";

 // Singleton ApplicationFacade Factory Method
 public static function getInstance() : ApplicationFacade

{
 if (instance == null) instance = new ApplicationFacade();
 return instance as ApplicationFacade;
 }

 // Register Commands with the Controller
 override protected function initializeController() : void
 {
 super.initializeController();
 registerCommand(STARTUP, StartupCommand);
 registerCommand(LOGIN, LoginCommand);

registerCommand(LoginProxy.LOGIN_SUCCESS, GetPrefsCommand);
 }

 // Startup the PureMVC apparatus, passing in a reference to the application
 public function startup(app:MyApp) : void
 {

sendNotification(STARTUP, app);
 }
 }
}

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 10 of 46 3/2/2008 9:57 PM

Façade

Creating a Concrete Façade for Your Application

There are a few things to note about the preceding code:

o It extends the PureMVC Façade class, which in turn
implements the IFacade interface.

o It does not override the constructor. If it did, it would

call the super class constructor before doing anything.

o It defines a static getInstance method that returns the
Singleton instance, creating and caching it if need be.
The reference to the instance is kept in a protected
property of the super class (Façade) and must be cast
to the subclass type before it is returned.

o It defines constants for Notification names. Since it is

the actor all others in the system use to access and
communicate with each other, the concrete Façade is
the perfect place to define the constant names that are
shared between notification participants.

o It initializes the Controller with Commands that will be

executed when corresponding Notifications are sent.

o It provides a startup method which takes an argument
(in this case) of type MyApp, which it passes by
Notification to the StartupCommand (registered to the
notification name STARTUP).

With these simple implementation requirements, your concrete
Façade will inherit quite a bit of functionality from the abstract
super class.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 11 of 46 3/2/2008 9:57 PM

Façade
Initializing your Concrete Façade

The PureMVC Façade’s constructor calls protected methods for
initializing the Model, View and Controller instances, and caching
them for reference.

By composition then, the Façade implements and exposes the
features of the Model, View and Controller; aggregating their
functionality and shielding the developer from direct interaction
with the Core actors of the framework.

So, where and how does the Façade fit into the scheme of things in
an actual application? Consider the following Flex Application:

MyApp.mxml:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

creationComplete="façade.startup(this)”>

 <mx:Script>
<![CDATA[

 // Get the ApplicationFacade
 import com.me.myapp.ApplicationFacade;
 private var facade:ApplicationFacade = ApplicationFacade.getInstance();
]]>

 </mx:Script>

 <!—Rest of display hierarchy defined here -->
</mx:Application>

That’s it. Pretty simple.

Build the initial view hierarchy, get the ApplicationFaçade instance
and invoke its startup method.

NOTE: In AIR, we would use ‘applicationComplete’, and in Flash we might instantiate the Façade and
make the startup call on Frame 1 or in a separate Document Class.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 12 of 46 3/2/2008 9:57 PM

Façade
Initializing your Concrete Façade

Key things to notice about this example are:

o We build the interface in the usual, declarative MXML
way; beginning with an <mx:Application> tag,
containing components and containers, either custom or
stock.

o A script block is used to declare and initialize a private

variable with the Singleton instance of the concrete
ApplicationFacade.

o Since we are initializing the variable with a call to the
static ApplicationFacade.getInstance method, this
means that by the time the Application’s
creationComplete event fires, the Façade will have been
created and along with it, the Model, View and
Controller, though no Mediators or Proxies will have
been created yet.

o In the creationComplete handler of the Application tag,

we invoke the startup method, passing a reference to
the main application.

Note that ordinary View Components have no need to know or
interact with the Façade, but the top-level Application is the
exception to the rule.

The top-level Application (or Flash Movie) builds the View hierarchy,
initializes the Facade, then starts up the PureMVC apparatus.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 13 of 46 3/2/2008 9:57 PM

Notifications

PureMVC implements the Observer pattern so that the Core actors and
their collaborators can communicate in a loosely-coupled way, and
without platform dependency.

The ActionScript language does not provide the Events model that is
used in Flex and Flash, those come from the Flash package. The
framework has been ported to other platforms such as C# and J2ME,
because the framework manages its own internal communications
rather than relying on those provided by the Flash platform.

Not simply a replacement for Events, Notifications operate in a
fundamentally different way, and work synergistically with Events to
produce extremely reusable View Components that need not even
know that they are coupled to a PureMVC system at all if engineered
properly.

Events vs. Notifications

Events are dispatched from Flash display objects that implement
the IEventDispatcher interface. The Event is ‘bubbled’ up the
display hierarchy, allowing the parent object to handle the Event, or
the parent’s parent, etc.

This is a chain of responsibility mechanism whereby only those in
the parent/child lineage have the opportunity to receive and act
upon the Event unless they have a reference to the dispatcher and
can set a listener directly upon it.

Notifications are sent by the Façade and Proxies; listened for and
sent by Mediators; mapped to and sent by Commands. It is a
publish/subscribe mechanism whereby many Observers may
receive and act upon the same Notification.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 14 of 46 3/2/2008 9:57 PM

Notifications
Events vs. Notifications

Notifications may have an optional ‘body’, which can be any
ActionScript object.

Unlike Flash Events, it is rarely necessary to create a custom
Notification class, since it can carry a payload ‘out of the box’. You
can of course create custom Notification classes in order to strongly
type interactions with them, but the limited real-world benefits of
the compile-time checking (for Notifications specifically) weighed
against the overhead of maintaining many Notification classes
reduce it to a question of programming style.

Notifications also have an optional ‘type’ that can be used by the
Notification recipient as a discriminator.

For instance, in a document editor application, there may be a
Proxy instance for each document that is opened and a
corresponding Mediator for the View Component used to edit the
document. The Proxy and Mediator might share a unique key that
the Proxy passes as the Notification type.

All the Mediator instances registered for that Proxy’s Notifications
will be notified, but will use the type property to determine if they
should act upon it or not.

Defining Notification and Event Constants

We have seen that the concrete Façade is a good place to define
common, Notification constants. Being the central mechanism for
interaction with the system, all notification participants will by
default be collaborators with Façade.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 15 of 46 3/2/2008 9:57 PM

Notifications
Defining Notification and Event Constants

A separate ‘ApplicationConstants’ class is sometimes used for this
purposed instead of the concrete Façade if the constant names
alone need to be known to another application.

In any case, centralized definition of constants for Notification
names ensures that when one of the notification participants needs
to refer to a Notification name, we can do so in a type-safe way
that the compiler can check, as opposed to using literal strings
which could be misspelled, but not cause an error.

Do not, however, define the names of Events on the concrete
Façade. Define Event name constants statically on the boundary
classes that generate them, or in custom Event classes that are
dispatched.

Representing the physical boundaries of the Application, View
Components and Data Objects may remain reusable if they
communicate to their associated Mediator or Proxy by dispatching
Events instead of making method calls or sending Notifications.

If a View Component or Data Object dispatches an Event that the
stewarding Mediator or Proxy is listening for, then it is likely that
only that collaboration pair need ever know the particular Event
name. Further communication between the listener and the rest of
the PureMVC system may occur through the use of Notifications.

Though the relationships of these collaboration pairs (Mediator/View
Component & Proxy/Data Object) are necessarily somewhat close,
they are loosely-coupled to the rest of the application architecture;
affording more contained refactoring of the data model or user
interface when required.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 16 of 46 3/2/2008 9:57 PM

Commands

The concrete Façade generally initializes the Controller with the set of
Notification to Command mappings needed at startup.

For each mapping, the Controller registers itself as an Observer for the
given Notification. When notified, the Controller instantiates the
appropriate Command. Finally, the Controller calls the Command’s
execute method, passing in the Notification.

Commands are stateless; they are created when needed and are
intended to go away when they have been executed. For this reason, it
is important not to instantiate or store references to Commands in
long-living objects.

Use of Macro and Simple Commands

Commands, like all PureMVC framework classes, implement an
interface, namely ICommand. PureMVC includes two ICommand
implementations that you may easily extend.

The SimpleCommand class merely has an execute method which
accepts an INotification instance. Insert your code in the execute
method and that’s it.

The MacroCommand class allows you to execute multiple sub-
commands sequentially, each being created and passed a reference
to the original Notification.

MacroCommand calls its initializeMacroCommand method from
within its constructor. You override this method in your subclasses
to call the addSubCommand method once for each Command to be
added. You may add any combination of SimpleCommands or
MacroCommands.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 17 of 46 3/2/2008 9:57 PM

Commands
Loosely Coupling Commands to Mediators and Proxies

Commands are executed by the Controller as a result of
Notifications being sent. Commands should never be instantiated
and executed by any other actor than the Controller.

To communicate and interact with other parts of the system,
Commands may:

o Register, remove or check for the existing registration of
Mediators, Proxies, and Commands.

o Send Notifications to be responded to by other Commands or

Mediators.

o Retrieve and Proxies and Mediators and manipulate them

directly.

Commands allow us to easily trigger the elements of the View into
the appropriate states, or transport data to various parts of it.

They can be used to perform transactional interactions with the
Model that span multiple Proxies, and require Notifications to be
sent when the whole transaction completes, or to handle exceptions
and take action on failure.

Orchestration of Complex Actions and Business Logic

With several places in the application that you might place code
(Commands, Mediators and Proxies); the question will inevitably
and repeatedly come up:

What code goes where? What, exactly, should a Command do?

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 18 of 46 3/2/2008 9:57 PM

Commands
Orchestration of Complex Actions and Business Logic

The first distinction to make about the logic in your application is
that of Business Logic and Domain Logic.

Commands house the Business Logic of our application; the
technical implementation of the use cases our application is
expected to carry out against the Domain Model. This involves
coordination of the Model and View states.

The Model maintains its integrity through the use of Proxies, which
house Domain Logic, and expose an API for manipulation of Data
Objects. They encapsulate all access to the data model whether it is
in the client or the server, so that to the rest of the application all
that is relevant is whether the data can be accessed synchronously
or asynchronously.

Commands may be used orchestrate complex system behaviors
that must happen in a specific order, and where it is possible that
the results of one action might feed the next.

Mediators and Proxies should expose a course-grained interface to
Commands (and each other), that hides the implementation of their
stewarded View Component or Data Object.

Note that when we talk about a View Component we mean a button
or widget the user interacts with directly. When we speak about
Data Objects that includes arbitrary structures that hold data as
well as the remote services we may use to retrieve or store them.

Commands interact with Mediators and Proxies, but should be
insulated from boundary implementations. Consider the following
Commands used to prepare the system for use:

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 19 of 46 3/2/2008 9:57 PM

Commands
Orchestration of Complex Actions and Business Logic

StartupCommand.as:

package com.me.myapp.controller
{
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3.patterns.command.*;

 import com.me.myapp.controller.*;

 // A MacroCommand executed when the application starts.
 public class StartupCommand extends MacroCommand
 {
 // Initialize the MacroCommand by adding its subcommands.
 override protected function initializeMacroCommand() : void
 {
 addSubCommand(ModelPrepCommand);
 addSubCommand(ViewPrepCommand);
 }
 }
}

This is a MacroCommand that adds two sub-commands, which are
executed in FIFO order when the MacroCommand is executed.

This provides a top level ‘queue’ of actions to be completed at
startup. But what should we do exactly, and in what order?

Before the user can be presented or interact with any of the
application’s data, the Model must be placed in a consistent, known
state. Once this has been achieved, the View can be prepared to
present the Model’s data and allow the user to manipulate and
interact with it.

Therefore, the startup process usually consists of two broad sets of
activities – preparation of the Model, followed by preparation of the
View.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 20 of 46 3/2/2008 9:57 PM

Commands
Orchestration of Complex Actions and Business Logic

ModelPrepCommand.as:

package com.me.myapp.controller
{
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3.patterns.observer.*;
 import org.puremvc.as3.patterns.command.*;

 import com.me.myapp.*;
 import com.me.myapp.model.*;

 // Create and register Proxies with the Model.
 public class ModelPrepCommand extends SimpleCommand
 {
 // Called by the MacroCommand

 override public function execute(note : INotification) : void
 {

 facade.registerProxy(new SearchProxy());
 facade.registerProxy(new PrefsProxy());
 facade.registerProxy(new UsersProxy());
 }
 }
}

Preparing the Model is usually a simple matter of creating and
registering all the Proxies the system will need at startup.

The ModelPrepCommand above is a SimpleCommand that prepares
the Model for use. It is the first of the previous MacroCommand’s
sub-commands, and so is executed first.

Via the concrete Façade, it creates and registers the various Proxy
classes that the system will use at startup. Note that the Command
does not do any manipulation or initialization of the Model data. The
Proxy is responsible for any data retrieval, creation or initialization
necessary to prepare its Data Object for use by the system.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 21 of 46 3/2/2008 9:57 PM

Commands
Orchestration of Complex Actions and Business Logic

ViewPrepCommand.as:

package com.me.myapp.controller
{
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3.patterns.observer.*;
 import org.puremvc.as3.patterns.command.*;

 import com.me.myapp.*;
 import com.me.myapp.view.*;

 // Create and register Mediators with the View.
 public class ViewPrepCommand extends SimpleCommand
 {

override public function execute(note : INotification) : void
{

 var app:MyApp = note.getBody() as MyApp;
 facade.registerMediator(new ApplicationMediator(app));
 }
 }
}

This is a SimpleCommand that prepares the View for use. It is the
last of the previous MacroCommand’s subcommands, and so, is
executed last.

Notice that the only Mediator it creates and registers is the
ApplicationMediator, which stewards the Application View
Component.

Further, it passes the body of the Notification into the constructor of
the Mediator. This is a reference to the Application, sent by the
Application itself as the Notification body when the original
STARTUP Notification was sent. (Refer to the previous MyApp
example.)

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 22 of 46 3/2/2008 9:57 PM

Commands
Orchestration of Complex Actions and Business Logic

The Application is a somewhat special View Component in that it
instantiates and has as children all the other View Components that
are initialized at startup time.

To communicate with the rest of the system, the View Components
need to have Mediators. And creating those Mediators requires a
reference to the View Components they will mediate, which only the
Application knows at this point.

The Application’s Mediator is the only class we’re allowing to know
anything about the Application’s implementation, so we handle the
creation of the remaining Mediators inside the constructor of the
Application’s Mediator.

So, with the above three Commands, we have orchestrated an
ordered initialization of the Model and the View. In doing so, the
Commands did not need to know very much about the Model or the
View.

When the details of the Model or the implementation of the View
change, the Proxies and Mediators are refactored as needed.

Business Logic in the Commands should be insulated from
refactoring that takes place at the application’s boundaries.

The Model should encapsulate ‘domain logic’, maintaining the
integrity of the data in the Proxies. Commands carry out
‘transactional’ or ‘business’ logic against the Model, encapsulating
the coordination of multi-Proxy transactions or handling and
reporting exceptions in the fashion called for by the application.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 23 of 46 3/2/2008 9:57 PM

Mediators

A Mediator class is used to mediate the user's interaction with one or
more of the application's View Components (such as Flex DataGrids or
Flash MovieClips) and the rest of the PureMVC application.

In a Flash-based application, a Mediator typically places event listeners
on its View Component to handle user gestures and requests for data
from the Component. It sends and receives Notifications to
communicate with the rest of the application.

Responsibilities of the Concrete Mediator

The Flash, Flex and AIR frameworks provide a vast array of richly-
interactive UI components. You may extend these or write your own
in ActionScript to provide endless possibilities for presenting the
data model to the user and allowing them to interact with it.

In the not so distant future, there will be other platforms running
ActionScript. And the framework has been ported and demonstrated
on other platforms already including Silverlight and J2ME, further
widening the horizons for RIA development with this technology.

A goal of the PureMVC framework is to be neutral to the
technologies being used at the boundaries of the application and
provide simple idioms for adapting whatever UI component or Data
structure/service you might find yourself concerned with at the
moment.

To the PureMVC-based application, a View Component is any UI
component, regardless of what framework it is provided by or how
many sub-components it may contain. A View Component should
encapsulate as much of its own state and operation as possible,
exposing a simple API of events, methods and properties.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 24 of 46 3/2/2008 9:57 PM

Mediators
Responsibilities of the Concrete Mediator

A concrete Mediator helps us adapt one or more View Components
to the application by holding the only references to those
components and interacting with the API they expose.

The responsibilities for the Mediator are primarily handling Events
dispatched from the View Component and relevant Notifications
sent from the rest of the system.

Since Mediators will also frequently interact with Proxies, it is
common for a Mediator to retrieve and maintain a local reference to
frequently accessed Proxies in its constructor. This reduces
repetitive retrieveProxy calls to obtain the same reference.

Casting the View Component Implicitly

The base Mediator implementation that comes with PureMVC
accepts a name and a generic Object as its sole constructor
arguments.

Your concrete Mediator’s constructor will pass its View Component
to the superclass and it will be made immediately available
internally as a protected property called viewComponent,
generically typed as Object.

You may also dynamically set a Mediator’s View Component after it
has been constructed by calling its setViewComponent method.

However it was set, you will frequently need to cast this Object to
its actual type, in order to access whatever API it exposes, which
can be a cumbersome and repetitive practice.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 25 of 46 3/2/2008 9:57 PM

Mediators
Casting the View Component Implicitly

ActionScript provides a language feature called implicit getters and
setters. An implicit getter looks like a method, but is exposed as a
property to the rest of the class or application. This turns out to be
very helpful in solving the frequent casting problem.

A useful idiom to employ in your concrete Mediator is an implicit
getter that casts the View Component to its actual type and gives it
a meaningful name.

By creating a method like this:

protected function get controlBar() : MyAppControlBar
{

 return viewComponent as MyAppControlBar;
 }

 Then, elsewhere in our Mediator, rather than doing this:

MyAppControlBar (viewComponent).searchSelction =
MyAppControlBar.NONE_SELECTED;

 We can instead do this:

controlBar.searchSelction = MyAppControlBar.NONE_SELECTED;

Listening and Responding to the View Component

A Mediator usually has only one View Component, but it might
manage several, such as an ApplicationToolBar and its contained
buttons or controls. We can contain a group of related controls
(such as a form) in a single View Component and expose the
children to the Mediator as properties. But it is best to encapsulate
as much of the component’s implementation as possible. Having the
component exchange data with a custom typed Object is better.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 26 of 46 3/2/2008 9:57 PM

Mediators
Listening and Responding to the View Component

The Mediator will handle the interaction with the Controller and
Model tiers, updating the View Component when relevant
Notifications are received.

On the Flash platform, we typically set Event listeners on the View
Component when the Mediator is constructed or has its
setViewComponent method called, specifying a handler method:

 controlBar.addEventListener(AppControlBar.BEGIN_SEARCH, onBeginSearch);

What the Mediator does in response to that Event is, of course
governed entirely by the requirements of the moment.

Generally, a concrete Mediator’s Event handling methods will
perform some combination of these actions:

o Inspect the Event for type or custom content if
expected.

o Inspect or modify exposed properties (or call

exposed methods) of the View Component.

o Inspect or modify exposed properties (or call
exposed methods) of a Proxy.

o Send one or more Notifications that will be

responded to by other Mediators or Commands (or
possibly even the same Mediator instance).

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 27 of 46 3/2/2008 9:57 PM

Mediators
Listening and Responding to the View Component

Some good rules of thumb are:

o If a number of other Mediators must be involved in
the overall response to an Event, then update a
common Proxy or send a Notification, which is
responded to by interested Mediators, all of whom
respond appropriately.

o If a great amount of coordinated interaction with

other Mediators is required, a good practice is to use
a Command to encode the steps in one place.

o Consider it a bad practice to retrieve other Mediators

and act upon them, or to design Mediators to expose
such a manipulation methods.

o To manipulate and distribute application state

information to the Mediators, set values or call
methods on Proxies created to maintain state. Let
the Mediators be interested in the Notifications sent
by the state-keeping Proxies.

Handling Notifications in the Concrete Mediator

In contrast to the explicit adding of event listeners to View
Components, the process of coupling the Mediator to the PureMVC
system is a simple and automatic one.

Upon registration with the View, the Mediator is interrogated as to
its notification interests. It responds with an array of the
Notification names it wishes to handle.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 28 of 46 3/2/2008 9:57 PM

Mediators
Handling Notifications in the Concrete Mediator

The simplest way to respond is with a single expression that creates
and returns an anonymous array, populated by the Notification
names, which should be defined as static constants, usually in the
concrete Façade.

Defining the Mediator’s list of Notification interests is easy:

override public function listNotificationInterests() : Array
{
 return [

ApplicationFacade.SEARCH_FAILED,
 ApplicationFacade.SEARCH_SUCCESS
];
}

When one of the Notifications named in the Mediator’s response is
sent by any actor in the system (including the Mediator itself), the
Mediator’s handleNotification method will be called, and the
Notification passed in.

Because of its readability, and the ease of which one may refactor
to add or remove Notifications handled, the ‘switch / case’ construct
is preferred over the ‘if / else if’ expression style inside the
handleNotifications method.

Essentially, there should be little to do in response to any given
Notification, and all the information needed should be in the
Notification itself. Occasionally some information may be retrieved
from a Proxy based on information inside the Notification, but there
should be no complicated logic in the Notification handler. If there
is, then it is a sign that you are trying to put the Business Logic that
belongs in a Command into the Notification handler of your
Mediator.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 29 of 46 3/2/2008 9:57 PM

Mediators
Handling Notifications in the Concrete Mediator

override public function handleNotification(note : INotification) : void
{

 switch (note.getName())
{

 case ApplicationFacade.SEARCH_FAILED:
 controlBar.status = AppControlBar.STATUS_FAILED;
 controlBar.searchText.setFocus();
 break;

 case ApplicationFacade.SEARCH_SUCCESS:
 controlBar.status = AppControlBar.STATUS_SUCCESS;
 break;

 }
 }

}

Also, a typical Mediator’s handleNotification method handles no
more than 4 or 5 Notifications.

More than that is a sign that the Mediator’s responsibilities should
be divided more granularly. Create Mediators for sub-components
of the ViewComponent rather than try to handle them all in one
monolithic Mediator.

The use of a single, predetermined notification method is the key
difference between the way a Mediator listens for Events and how it
listens for Notifications.

With Events, we have a number of handler methods, usually one for
each Event the Mediator handles. Generally these methods just
send Notifications. They should not be complicated, nor should they
be micro-managing many View Component details, since the View
Component should be written to encapsulate implementation
details, exposing a course-grained API to the Mediator.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 30 of 46 3/2/2008 9:57 PM

Mediators
Handling Notifications in the Concrete Mediator

With Notifications, you have a single handler method, inside which
you handle all Notifications the Mediator is interested in.

It is best to contain the responses to Notifications entirely inside the
handleNotification method, allowing the switch statement to
separate them clearly by Notification name.

There has been much debate on the usage of ‘switch/case’ as many
developers consider it to limiting since all cases execute within the
same scoped method. However, the single Notification method and
‘switch/case’ style was specifically chosen to limit what is done
inside the Mediator, and remains the recommended construct.

The Mediator is meant to mediate communications between the
View Component and the rest of the system.

Consider the role of a translator mediating the exchange of
conversation between her Ambassador and the rest of the members
at a UN conference. She should rarely be doing more than simple
translation and forwarding of messages, occasionally reaching for
an appropriate metaphor or fact. The same is true of the Mediator’s
role within PureMVC.

Coupling of Mediators to Proxies and other Mediators

Since the View is ultimately charged with representing the data
model in a graphical, interactive way, a relatively tight one-way
coupling to the application’s Proxies is to be expected. The View
must know about the Model, but the Model has no need to know
any aspect of the View.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 31 of 46 3/2/2008 9:57 PM

Mediators
Coupling of Mediators to Proxies and other Mediators

Mediators may freely retrieve Proxies from the Model, and read or
manipulate the Data Object via any API exposed by the Proxy.
However, doing the work in a Command will loosen the coupling
between the View and the Model.

In the same fashion, Mediators could retrieve references to other
Mediators from the View and read or manipulate them in any way
exposed by the retrieved Mediator.

However this is not a good practice, since it leads to dependencies
between parts of the View, which negatively impacts the ability to
refactor one part of the View without affecting another.

A Mediator that wishes to communicate with another part of the
View should send a Notification rather than retrieving another
Mediator and manipulating it directly.

Mediators should not expose methods for manipulating their
stewarded View Component(s), but should instead respond only to
Notifications to carry out such work.

If much manipulation of a View Component’s internals is being done
in a Mediator (in response to an Event or Notification), refactor that
work into a method on the View Component, encapsulating its
implementation as much as possible, yielding greater reusability.

If much manipulation of Proxies or their data is being done in a
Mediator, refactor that work into a Command, simplifying the
Mediator, moving Business Logic into Commands where it may be
reused by other parts of the View, and loosening the coupling of the
View to the Model to the greatest extent possible.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 32 of 46 3/2/2008 9:57 PM

Mediators
User Interaction with View Components and Mediators

Consider a LoginPanel component presenting a form. There is a
LoginPanelMediator which allows the user to communicate their
credentials and intention to log in by interacting with the LoginPanel
and responding to their input by initiating a login attempt.

The collaboration between the LoginPanel component and the
LoginPanelMediator is that the component sends a TRY_LOGIN
Event when the user has entered their credentials and wants to try
logging in. The LoginPanelMediator handles the Event by sending a
Notification with component’s populated LoginVO as the body.

LoginPanel.mxml:

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:mx="http://www.adobe.com/2006/mxml"

title="Login" status=”{loginStatus}”>

<!—
The events this component dispatches. Unfortunately we can’t use
the constant name here, because MetaData is a compiler directive
 -->

 <mx:MetaData>
 [Event('tryLogin')];
 </mx:MetaData>

 <mx:Script>
 <![CDATA[
 import com.me.myapp.model.vo.LoginVO;
 // The form fields bind bidirectionally to this object’s props
 [Bindable] public var loginVO:LoginVO = new LoginVO();
 [Bindable] public var loginStatus:String = NOT_LOGGED_IN;

 // Define a constant on the view component for event names
 public static const TRY_LOGIN:String='tryLogin';
 public static const LOGGED_IN:String='Logged In';
 public static const NOT_LOGGED_IN:String='Enter Credentials';
]]>
 </mx:Script>

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 33 of 46 3/2/2008 9:57 PM

Mediators
User Interaction with View Components and Mediators

 <mx:Binding source="username.text" destination="loginVO.username"/>
 <mx:Binding source="password.text" destination="loginVO.password"/>

<!—The Login Form -->
<mx:Form id="loginForm" >
 <mx:FormItem label="Username:">
 <mx:TextInput id="username" text="{loginVO.username}" />
 </mx:FormItem>
 <mx:FormItem label="Password:">
 <mx:TextInput id="password" text="{loginVO.password}"
 displayAsPassword="true" />
 </mx:FormItem>
 <mx:FormItem >
 <mx:Button label="Login" enabled="{loginStatus == NOT_LOGGED_IN}”

click="dispatchEvent(new Event(TRY_LOGIN, true));"/>
 </mx:FormItem>

 </mx:Form>
</mx:Panel>

The LoginPanel View Component populates a new LoginVO with the
user’s form input and when they click the ‘Login’ button, an Event is
dispatched. Then the LoginPanelMediator will take over.

This leaves the View Component with the simple role of gathering
the data and alerting the system when it is ready.

A more complete component would only enable the login button
when both the username and password fields have content
preventing a bad login attempt before it is ever made.

The View Component hides its internal implementation, its entire
API used by the Mediator consisting of a TRY_LOGIN Event, a
LoginVO property to be checked, and the Panel status property.

The LoginPanelMediator will also respond to LOGIN_FAILED and
LOGIN_SUCCESS Notifications and set the LoginPanel status.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 34 of 46 3/2/2008 9:57 PM

Mediators
User Interaction with View Components and Mediators

LoginPanelMediator.as:

package com.me.myapp.view
{
 import flash.events.Event;
 import org.puremvc.as3.interfaces.*;
 import org.puremvc.as3.patterns.mediator.Mediator;
 import com.me.myapp.model.LoginProxy;
 import com.me.myapp.model.vo.LoginVO;
 import com.me.myapp.ApplicationFacade;
 import com.me.myapp.view.components.LoginPanel;

 // A Mediator for interacting with the LoginPanel component.
 public class LoginPanelMediator extends Mediator implements IMediator
 {

 public static const NAME:String = 'LoginPanelMediator';

 public function LoginPanelMediator(viewComponent:LoginPanel)

{
 super(NAME, viewComponent);
 LoginPanel.addEventListener(LoginPanel.TRY_LOGIN, onTryLogin);
 }

 // List Notification Interests
 override public function listNotificationInterests() : Array

{
 return [

LoginProxy.LOGIN_FAILED,
 LoginProxy.LOGIN_SUCCESS

];
 }

 // Handle Notifications
 override public function handleNotification(note:INotification):void

{
 switch (note.getName()) {
 case LoginProxy.LOGIN_FAILED:
 LoginPanel.loginVO = new LoginVO();
 loginPanel.loginStatus = LoginPanel.NOT_LOGGED_IN;
 break;

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 35 of 46 3/2/2008 9:57 PM

Mediators
User Interaction with View Components and Mediators

 case LoginProxy.LOGIN_SUCCESS:
 loginPanel.loginStatus = LoginPanel.LOGGED_IN;
 break;
 }
 }

 // User clicked Login Button; try to log in
 private function onTryLogin (event:Event) : void {
 sendNotification(ApplicationFacade.LOGIN, loginPanel.loginVO);
 }

 // Cast the viewComponent to its actual type.
 protected function get loginPanel() : LoginPanel {
 return viewComponent as LoginPanel;
 }
 }
}

Note that the LoginPanelMediator places an Event listener on the
LoginPanel in its constructor, so that the onTryLogin method will be
invoked when the user has clicked the Login button. In the
onTryLogin method, the LOGIN Notification is sent, bearing the user
populated LoginVO.

Earlier, we registered the LoginCommand to this Notification. It will
invoke the LoginProxy’s login method, passing the LoginVO. The
LoginProxy will attempt the login with the remote service, and send
a LOGIN_SUCCESS or LOGIN_FAILED Notification. These classes
are defined at the end of the section on Proxies.

The LoginPanelMediator lists LOGIN_SUCCESS and LOGIN_FAILED
as its Notification interests, and so regardless of the outcome, it will
be notified, and will set the LoginPanel’s loginStatus to LOGGED_IN
on success; and to NOT_LOGGED_IN on failure, clearing the
LoginVO.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 36 of 46 3/2/2008 9:57 PM

Proxies

Generally speaking, the Proxy pattern is used to provide a placeholder
for an object in order to control access to it. In a PureMVC-based
application, the Proxy class is used specifically to manage a portion of
the application's data model.

A Proxy might manage access to a locally created data structure of
arbitrary complexity. This is the Proxy’s Data Object.

In this case, idioms for interacting with it probably involve
synchronous setting and getting of its data. It may expose all or part
of its Data Object’s properties and methods, or a reference to the Data
Object itself. When exposing methods for updating the data, it may
also send Notifications to the rest of the system that the data has
changed.

A Remote Proxy might be used to encapsulate interaction with a
remote service to save or retrieve a piece of data. The Proxy can
maintain the object that communicates with the remote service, and
control access to the data sent and received from the service.

In such a case, one might set data or call a method of the Proxy and
await an asynchronous Notification, sent by the Proxy when the
service has received the data from the remote endpoint.

Responsibilities of the Concrete Proxy

The concrete Proxy allows us to encapsulate a piece of the data
model, wherever it comes from and whatever its type, by managing
the Data Object and the application’s access to it.

The Proxy implementation class that comes with PureMVC is a
simple data carrier object that can be registered with the Model.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 37 of 46 3/2/2008 9:57 PM

Proxies
Responsibilities of the Concrete Proxy

Though it is completely usable in this form, you will usually subclass
Proxy and add functionality specific to the particular Proxy.

Common variations on the Proxy pattern include:

o Remote Proxy, where the data managed by the
concrete Proxy is in a remote location and will be
accessed via a service of some sort.

o Proxy and Delegate, where access to a service object

needs to be shared between multiple Proxies. The
Delegate class maintains the service object and
controls access to it, ensuring that responses are
properly routed to their requestors.

o Protection Proxy, used when objects need to have

different access rights.

o Virtual Proxy, which creates expensive objects on
demand.

o Smart Proxy, loads data object into memory on first

access, performs reference counting, allows locking
of object to ensure no other object can change it.

Casting the Data Object Implicitly

The base Proxy implementation that comes with PureMVC accepts a
name and a generic Object as constructor arguments. You may
dynamically set a Proxy’s Data Object after it is constructed by
calling its setData method.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 38 of 46 3/2/2008 9:57 PM

Proxies
Casting the Data Object Implicitly

As with the Mediator and its View Component, you will need to cast
this Object frequently to its actual type, in order to access whatever
properties and methods it exposes; at best a cumbersome and
repetitive practice, but possibly leading to idioms that expose more
of the Data Object’s implementation than necessary.

Also, since the Data Object is often a complex structure we
frequently need to have handy named references to several parts of
the structure in addition to a typecast reference to the structure
itself.

Again the ActionScript language feature called implicit getters and
setters prove to be very helpful in solving the frequent casting and
improper implementation knowledge problem.

A useful idiom to employ in your concrete Proxy is an implicit getter
that casts the Data Object to its actual type and gives it a
meaningful name.

Additionally, it may define multiple differently-typed getters to
retrieve specific parts of the Data Object.

For instance:

public function get searchResultAC () : ArrayCollection
{

 return data as ArrayCollection;
 }

public function get resultEntry(index:int) : SearchResultVO
{

 return searchResultAC.getItemAt(index) as SearchResultVO;
 }

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 39 of 46 3/2/2008 9:57 PM

Proxies
Casting the Data Object Implicitly

 Elsewhere in a Mediator, rather than doing this:

var item:SearchResultVO =
ArrayCollection (searchProxy.getData()).lastResult.getItemAt(1) as SearchResultVO;

 We can instead do this:

var item:SearchResultVO = searchProxy.resultEntry(1);

Prevent Coupling to Mediators

The Proxy is not interrogated as to its Notification interests as is the
Mediator, nor is it ever notified, because it should not be concerned
with the state of the View. Instead, the Proxy exposes methods and
properties to allow the other actors to manipulate it.

The concrete Proxy should not retrieve and manipulate Mediators as
a way of informing the system about changes to its Data Object.

It should instead send Notifications that will be responded to by
Commands or Mediators. How the system is affected by those
Notifications should be of no consequence to the Proxy.

By keeping the Model tier free of any knowledge of the system
implementation, the View and Controller tiers may be refactored
often without affecting the Model tier.

The obverse is not quite true. It is difficult for the Model tier to
change without affecting the View and possibly Controller tiers as a
result. After all, those tiers exist only to allow the user to interact
with the Model tier.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 40 of 46 3/2/2008 9:57 PM

Proxies
Encapsulate Domain Logic in Proxies

A change in the Model tier will almost always result in some
refactoring of the View/Controller tiers.

We increase the separation between the Model tier and the
combined interests of the View and Controller tiers by ensuring that
we place as much of the Domain Logic, into the Proxies as possible.

The Proxy may be used not only to control access to data but also
to perform operations on the data as may be required to keep that
data in a valid state.

For instance, the computation of sales tax is a Domain Logic
function that should reside in a Proxy, not a Mediator or Command.

Though it could be performed in any of those places, placing it in a
Proxy is not only logical, it keeps the other tiers lighter and easier
to refactor.

A Mediator may retrieve the Proxy; call its sales tax function,
passing in some form items perhaps. But placing the actual
computation in the Mediator would be embedding Domain Logic in
the View tier. Sales tax computation is a rule belonging to the
Domain Model. The View merely sees it as a property of the Domain
Model, available if the appropriate inputs are present.

Imagine that the application you are working on is currently an RIA
delivered in the browser for desktop-scale resolutions. A new
version is to be delivered for PDA resolution with a reduced use
case set, but still with full Model tier requirements in place with
today’s app.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 41 of 46 3/2/2008 9:57 PM

Proxies
Encapsulate Domain Logic in Proxies

With the right separation of interests, we may be able to reuse the
Model tier in its entirety and simply fit new View and Controller tiers
to it.

Though placing the actual computation of sales tax in the Mediator
might seem efficient or easy at the moment of implementation; you
just took data from a form and you want to compute sales tax and
poke it into the model as an order, perhaps.

However on the each version of your app you will now have to
duplicate your effort or copy/paste sales tax logic into your new,
completely different view tier, rather than have it show up
automatically with the inclusion of your Model tier library.

Interacting with Remote Proxies

A Remote Proxy is merely a Proxy that gets its Data Object from
some remote location. This usually means that we interact with it in
an asynchronous fashion.

How the Proxy gets its data depends on the client platform, the
remote service implementation, and the preferences of the
developer. In a Flash/Flex environment we might use HTTPService,
WebService, RemoteObject, DataService or even XMLSocket to
make service requests from within the Proxy.

Depending on its requirements, a Remote Proxy may send requests
dynamically, in response to having a property set or a method
called; or it might make a single request at construction time and
provide get/set access to the data thereafter.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 42 of 46 3/2/2008 9:57 PM

Proxies
Interacting with Remote Proxies

There are a number of optimizations that may be applied in the
Proxy to increase efficiency of the communication with a remote
service.

It may be built in such a way as to cache the data, so as to reduce
network ‘chattiness’; or to send updates to only certain parts of a
data structure that have changed, reducing bandwidth
consumption.

If a request is dynamically invoked on a Remote Proxy by another
actor in the system, the Proxy should send a Notification when the
result has returned.

The interested parties to that Notification may or may not be the
same that initiated the request.

For example, the process of invoking a search on a remote service
and displaying the results might follow these steps:

o A View Component initiates a search by dispatching
an Event.

o Its Mediator responds by retrieving the appropriate

Remote Proxy and setting a searchCriteria property.

o The searchCriteria property on the Proxy is really an
implicit setter, which stores the value and initiates
the search via an internal HTTPService to which it is
listening for result and fault Events.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 43 of 46 3/2/2008 9:57 PM

Proxies
Interacting with Remote Proxies

o When the service returns, it dispatches a ResultEvent

which the Proxy responds to by setting a public
property on itself to the result.

o The Proxy then sends a Notification indicating

success, bundling a reference to the data object as
the body of the Notification

o Another Mediator has previously expressed interest

in that particular Notification and responds by taking
the data from the Notification body, and setting it as
the dataProvider property of its stewarded View
Component.

Or consider a LoginProxy, who holds a LoginVO (a Value Object; a
simple data carrier class). The LoginVO might look like this:

package com.me.myapp.model.vo
{

// Map this AS3 VO to the following remote class
[RemoteClass(alias="com.me.myapp.model.vo.LoginVO")]

[Bindable]
public class LoginVO
{
 public var username: String;
 public var password: String;

 public var authToken: String; // set by the server if credentials are valid
}

}

The LoginProxy exposes methods for setting the credentials, logging
in, logging out, and retrieving the authorization token that will be
included on service calls subsequent to logging in using this
particular authentication scheme.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 44 of 46 3/2/2008 9:57 PM

Proxies
Interacting with Remote Proxies

LoginProxy:

package com.me.myapp.model
{

import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
import mx.rpc.remoting.RemoteObject;
import org.puremvc.as3.interfaces.*;
import org.puremvc.as3.patterns.proxy.Proxy;
import com.me.myapp.model.vo.LoginVO;

// A proxy to log the user in
public class LoginProxy extends Proxy implements IProxy {

public static const NAME:String = 'LoginProxy';
public static const LOGIN_SUCCESS:String = 'loginSuccess';
public static const LOGIN_FAILED:String = 'loginFailed';
public static const LOGGED_OUT:String = 'loggedOut';
private var loginService: RemoteObject;

public function LoginProxy () {
 super(NAME, new LoginVO ());
 loginService = new RemoteObject();
 loginService.source = "LoginService";
 loginService.destination = "GenericDestination";
 loginService.addEventListener(FaultEvent.FAULT, onFault);
 loginService.login.addEventListener(ResultEvent.RESULT, onResult);
}

// Cast data object with implicit getter
public function get loginVO() : LoginVO {
 return data as LoginVO;
}

// The user is logged in if the login VO contains an auth token
public function get loggedIn():Boolean {
 return (authToken != null);
}

// Subsequent calls to services after login must include the auth token
public function get authToken():String {
 return loginVO.authToken;
}

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 45 of 46 3/2/2008 9:57 PM

Proxies
Interacting with Remote Proxies

// Set the users credentials and log in, or log out and try again
public login(tryLogin:LoginVO) : void {
 if (! loggedIn) {
 loginVO.username= tryLogin.username;
 loginVO.password = tryLogin.password;
 } else {
 logout();
 login(tryLogin);
 }
}

// To log out, simply clear the LoginVO
public function logout() : void
{
 if (loggedIn) loginVO = new LoginVO();

sendNotification(LOGGED_OUT);
}

// Notify the system of a login success
private function onResult(event:ResultEvent) : void
{
 setData(event.result); // immediately available as loginVO
 sendNotification(LOGIN_SUCCESS, authToken);
}

// Notify the system of a login fault
private function onFault(event:FaultEvent) : void
{
 sendNotification(LOGIN_FAILED, event.fault.faultString);
}

}
 }

A LoginCommand might retrieve the LoginProxy, set the
credentials, and invoke the login method, calling the service.

A GetPrefsCommand might respond to the LOGIN_SUCCESS
Notification, retrieve the authToken from the Notification body
and make a call to the next service that retrieves the User’s
preferences.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.

Reuse is governed by the Creative Commons 3.0 Attribution US License. PureMVC, as well as this documentation and any training materials or demonstration source code
downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of

fitness for a purpose, or the warranty of non-infringement.

Implementation Idioms & Best Practices.doc Page 46 of 46 3/2/2008 9:57 PM

Proxies
Interacting with Remote Proxies

LoginCommand:

package com.me.myapp.controller {
import org.puremvc.as3.interfaces.*;
import org.puremvc.as3.patterns.command.*;
import com.me.myapp.model.LoginProxy;
import com.me.myapp.model.vo.LoginVO;

public class LoginCommand extends SimpleCommand {

override public function execute(note: INotification) : void {
 var loginVO : LoginVO = note.getBody() as LoginVO;

 var loginProxy: LoginProxy;
loginProxy = facade.retrieveProxy(LoginProxy.NAME) as LoginProxy;

 loginProxy.login(loginVO);
 }
}

 }

GetPrefsCommand:

package com.me.myapp.controller {
import org.puremvc.as3.interfaces.*;
import org.puremvc.as3.patterns.command.*;
import com.me.myapp.model.LoginProxy;
import com.me.myapp.model.vo.LoginVO;

public class GetPrefsCommand extends SimpleCommand {

override public function execute(note: INotification) : void {
 var authToken : String = note.getBody() as String;

 var prefsProxy : PrefsProxy;
prefsProxy = facade.retrieveProxy(PrefsProxy.NAME) as PrefsProxy;

 prefsProxy.getPrefs(authToken);
 }
}

 }

	 Model & Proxies 4
	 View & Mediators 4
	 Controller & Commands 5
	 Façade & Core 5
	 Observers & Notifications 5
	 Notifications Can Be Used to Trigger Command Execution 6
	 Mediators Send, Declare Interest In, and Receive Notifications 6
	 Proxies Send, But Do Not Receive Notifications 6
	 What is a Concrete Façade? 8
	 Creating a concrete Façade for your Application 8
	 Initializing your concrete Façade 11
	 Events vs. Notifications 13
	 Defining Event and Notification Constants 14
	 Use of Macro and Simple Commands 16
	 Loosely-coupling Commands to Mediators and Proxies 17
	 Orchestration of Complex Actions and Business Logic 17
	 Responsibilities of the Concrete Mediator 23
	 Casting the View Component Implicitly 24
	 Listening and Responding to the View Component 25
	 Handling Notifications in the Concrete Mediator 27
	 Coupling of Mediators to Proxies and other Mediators 30
	 User Interaction with View Components and Mediators 32
	 Responsibilities of the Concrete Proxy 36
	 Casting the Data Object Implicitly 37
	 Prevent Coupling to Mediators 39
	 Encapsulate Domain Logic 40
	 Interacting with Remote Proxies 41
	Commands
	Commands

