

Framework Overview
with UML Diagrams

Learn to Build Robust, Scalable and Maintainable
Applications using PureMVC

Framework Overview

This document discusses the classes and interfaces of the PureMVC
framework; illustrating their roles, responsibilities and collaborations
with simple UML (Unified Modeling Language) diagrams.

The PureMVC framework has a very narrow goal. That is to help you
separate your application’s coding concerns into three discrete tiers;
Model, View and Controller.

In this implementation of the classic MVC design meta-pattern, the
application tiers are represented by three Singletons (a class where
only one instance may be created).

A fourth Singleton, the Façade, simplifies development by providing a
single interface for communications throughout the application.

The Model caches named references to Proxies, which expose an API for
manipulating the Data Model (including data retrieved from remote services).

The View primarily caches named references to Mediators, which adapt and
steward the View Components that make up the user interface.

The Controller maintains named mappings to Command classes, which are
stateless, and only created when needed.

The Façade initializes and caches the Core actors (Model, View and
Controller), and provides a single place to access all of their public methods.

 AUTHOR: Cliff Hall <cliff@puremvc.org>
LAST MODIFIED: 3/05/2008

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 2 of 14 3/5/2008 10:27 PM

Façade and Core

The Façade class makes it possible for the Proxies, Mediators and

Commands that make up most of our final application to talk to each

other in a loosely coupled way, without having to import or work
directly with the Core framework actors.

When we create a concrete Façade implementation for our application,

we are able to use the Core actors ‘out of the box’, incidental to our
interaction with the Façade, minimizing the amount of API knowledge

the developer needs to have to be successful with the framework.

The Core actors Model, View and Controller implement IModel, IView

and IController interfaces respectively. The Façade implements IFacade,

which implements all the Core interfaces, by composition.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 3 of 14 3/5/2008 10:27 PM

Façade and Core

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 4 of 14 3/5/2008 10:27 PM

View, Mediators and View Components

The View class is implemented as a Singleton that caches and provides

access to concrete IMediator instances.

Mediators help us to create or reuse existing user interface

components without the need to imbue them with knowledge about
the PureMVC application they communicate with. Concrete Mediators
must implement the IMediator interface, usually by sub-classing the

framework Mediator class.

View Components display data or accept user gestures. In a Flash-
based application, they typically communicate with their Mediators
using Events and exposing some properties for the concrete Mediator
to inspect or manage. A Mediator connects a View Component with its

data and communicates with the rest of the system on its behalf.

When a concrete Mediator is registered with the View, it is queried as

to its Notification interests. It must return an Array of all the names of

the Notifications it wishes to be informed of.

Because it must implement the IMediator interface, the concrete

Mediator will have a handleNotification method. When it is registered

with the View, an Observer instance is created and registered for each

Notification in the Array so that the Mediator's handleNotification

method is invoked whenever a Notification of interest to the Mediator
is sent.

The Mediator framework class implements INotifier and so has a

sendNotification method, which takes the parameters for a new

Notification, constructs the Notification and uses the Singleton IFacade

instance to send it.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 5 of 14 3/5/2008 10:27 PM

View, Mediators and View Components

The Mediator’s protected façade property is initialized to the registered

IFacade instance, and therefore the Mediator must be constructed after

you have initialized your Application's concrete Façade.

+registerObserver(in notificationName : String, in observer : IObserver) : void
+notifyObservers(in notification : INotification) : void
+registerMediator(in mediator : IMediator) : void
+retrieveMediator(in mediatorName : String) : IMediator
+removeMediator(in mediatorName : String) : void
+hasMediator(in mediatorName : String) : Boolean
+View()
+getInstance() : IView
#initializeView() : void

-instance : IView
-mediatorMap : Array
-observerMap : Array
-SINGLETON_MSG : String

View

+getMediatorName() : String
+setViewComponent(in viewComponent : Object) : void
+getViewComponent() : Object
+listNotificationInterests() : Array
+handleNotification(in notification : INotification) : void
+onRegister() : void
+onRemove() : void
+sendNotification(in notificationName : String, in body : Object, in type : String) : void
+Meditator(in viewComponent : Object)

+NAME : String
-viewComponent : Object
-facade : IFacade

Mediator

1

*

IMediator

IView

ViewComponent

1

1

1

1

FacadeIFacade

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 6 of 14 3/5/2008 10:27 PM

Model, Proxies and Data Objects

The Model class is implemented as a Singleton that caches and

provides access to concrete IProxy instances.

Proxies help us to expose data structures and entity classes (and the

domain logic and services that support them) to our application in such
a way that they may be easily reused elsewhere, or refactored with a
minimum amount of impact to the rest of the application.

We might use a concrete Proxy to simply manage a reference to a

local data object, in which case idioms for interacting with it might
involve synchronous setting and getting of its data.

A Proxy might also encapsulate the application's interaction with a

remote service to save or retrieve a piece of data, in which case, one
might call a method or set data upon the Proxy and await a

Notification sent when the Proxy has retrieved the data from the

service.

The Proxy framework class implements INotifier and so has a

sendNotification method, which takes the parameters for a new

Notification, constructs the Notification and uses the IFacade Singleton

instance to send it.

Its protected façade property is initialized to the registered IFacade

instance, and therefore the Proxy must be constructed after you have

initialized your Application's concrete Facade.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 7 of 14 3/5/2008 10:27 PM

Model, Proxies and Data Objects

+regsterProxy(in proxy : IProxy) : void
+retrieveProxy(in proxyName : String) : IProxy
+removeProxy(in proxyName : String) : void
+hasProxy(in proxyName : String) : Boolean
+Model()
+getInstance() : IModel
#initializeModel() : void

-instance : IModel
-proxyMap : Array
-SINGLETON_MSG : String

Model

1

*

+getProxyName() : IProxy
+onRegister() : void
+onRemove() : void
+sendNotification(in notificationName : String, in body : Object, in type : String) : void
+getData() : Object
+setData() : Object

+NAME : String
-data : Object
-proxyName : String
-facade : IFacade

Proxy

IProxy

IModel

DataObject

1

1

1

1

FacadeIFacade

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 8 of 14 3/5/2008 10:27 PM

Controller and Commands

The Controller class is implemented as a Singleton that maintains a

mapping between Notification names and Command class references.

A Command may retrieve and interact with Proxies, communicate with

Mediators, or execute other Commands. Commands are often used to

orchestrate complex or system-wide activities such as application
startup and shutdown.

When it is initialized (typically by an IFacade implementation), the

Controller creates and registers with the View an appropriate Observer
instance for each Notification to Command mapping, such that when

any of the registered Notifications are broadcast, the Controller's
executeCommand method is called with the Notification.

When Notifications are broadcast by the View, the Controller
instantiates the appropriate Command class and calls the execute

method, passing in the Notification.

PureMVC includes two ICommand class implementations that you may

easily extend. Both implement INotifier, and so have a sendNotification

method and a protected façade property, initialized to the Singleton

IFaçade instance.

The SimpleCommand class merely has an execute method which is

called with the Notification object.

The MacroCommand class allows you to execute multiple

'subcommands' sequentially, each being created and passed the
original Notification on its execute method.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 9 of 14 3/5/2008 10:27 PM

Controller and Commands

MacroCommand calls its initializeMacroCommand method from within

its constructor. You override this method in your sub classes to call the
addSubCommand method once for each Command to be added. You

may add SimpleCommands or other MacroCommands.

+registerCommand(in notificationName : String, in commandClassRef : Class) : void
+executeCommand(in notification : INotification) : void
+removeCommand(in notificationName : String) : void
+hasCommand(in notificationName : String) : Boolean
+Controller()
+getInstance() : IView
#initializeController() : void

Controller
-instance : IController
-view : IView
-commandMap : Array
-SINGLETON_MSG : String

IController

+execute(in notification : INotification) : void
+sendNotification(in notificationName : String, in body : Object, in type : String) : String
+MacroCommand()
+initializeMacroCommand() : void
+addSubCommand(in commandClassRef : Class) : void

MacroCommand
-subCommands : Array
-facade : IFacade

+execute(in notification : INotification) : void
+sendNotification(in notificationName : String, in body : Object, in type : String) : String

SimpleCommand
-facade : IFacade

ICommand

ICommand

«uses»

1

1

FacadeIFacade

1

1

IFacade

«uses»

Facade

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 10 of 14 3/5/2008 10:27 PM

View, Observer and Notification

Proxies, Mediators and Commands communicate with each other in a

loosely-coupled and platform-neutral way by broadcasting
Notifications.

• Proxies may broadcast, but do not listen for

Notifications.

• Mediators listen for and may broadcast Notifications.

• Commands are triggered by and may broadcast

Notifications.

Since PureMVC applications may also run in a pure ActionScript
environment without the underlying flash.events.Event and

EventDispatcher classes, the framework implements an Observer

notification scheme for communication between the Core actors and
other parts of the system.

PureMVC employs the Observer pattern for this purpose. An IObserver
instance carries a reference to an object which wishes to be notified
(the 'Notify Context'), and a method on that object to call when an
INotification is broadcast (the 'Notify Method').

The View is responsible for managing the map of Notification names to

Observer lists and for notifying all Observers when a Notification is

sent.

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 11 of 14 3/5/2008 10:27 PM

View, Observer and Notification

+setNotifyMethod(in notifyMethod : Function) : void
+setNotifyContext(in notifyContext : Object) : void
+getNotifyMethod() : Function
+getNotifyContext() : Object
+notifyObserver(in notification : INotification) : void
+Observer(in method : Function, in context : Object)

-notify : Function
-context : Object

Observer

+registerObserver(in notificationName : String, in observer : IObserver) : void
+notifyObservers(in notification : INotification) : void
+registerMediator(in mediator : IMediator) : void
+retrieveMediator(in mediatorName : String) : IMediator
+removeMediator(in mediatorName : String) : void
+hasMediator(in mediatorName : String) : Boolean
+View()
+getInstance() : IView
#initializeView() : void

-instance : IView
-mediatorMap : Array
-observerMap : Array
-SINGLETON_MSG : String

View

IView

IObserver

1

*

+getName() : String
+setBody(in body : Object) : void
+getBody() : Object
+setType(in type : String) : void
+getType() : String
+toString() : String
+Notification(in notificationName : String, in body : Object = null, in type : String = null)

-name : String
-type : String
-body : Object

Notification

INotification

«uses»

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 12 of 14 3/5/2008 10:27 PM

Interfaces
IFacade

IModel

+regsterProxy(in proxy : IProxy) : void
+retrieveProxy(in proxyName : String) : IProxy
+removeProxy(in proxyName : String) : void
+hasProxy(in proxyName : String) : Boolean

«interface»interfaces::IModel

IView

+registerObserver(in notificationName : String, in observer : IObserver) : void
+notifyObservers(in notification : INotification) : void
+registerMediator(in mediator : IMediator) : void
+retrieveMediator(in mediatorName : String) : IMediator
+removeMediator(in mediatorName : String) : void
+hasMediator(in mediatorName : String) : Boolean

«interface»interfaces::IView

IController

+registerCommand(in notificationName : String, in commandClassRef : Class) : void
+executeCommand(in notification : INotification) : void
+removeCommand(in notificationName : String) : void
+hasCommand(in notificationName : String) : Boolean

«interface»interfaces::IController

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 13 of 14 3/5/2008 10:27 PM

Interfaces
IProxy

IMediator

ICommand

INotifier

IObserver

PureMVC is a free, open source framework created and maintained by Futurescale, Inc. Copyright © 2006-08, Some rights reserved.
Reuse is governed by the Creative Commons 3.0 Attribution Unported License. PureMVC, as well as this documentation and any training materials or demonstration source

code downloaded from Futurescale’s websites is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of fitness for a purpose, or the warranty of non-infringement.

PureMVC_Framework_Overview_with_UML.doc Page 14 of 14 3/5/2008 10:27 PM

Interfaces
INotification

	Framework Overview

